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S l l l l l m a r y  

Cytolytic T lymphocytes (CTL), natural killer cells, and lymphokine-activated killer (LAK) cells 
are cytolytic cells known to release the cytolytic protein perforin and a family of proteases, named 
granzymes, from cytoplasmic stores upon interaction with target cells. We now report the 
purification of an additional major 60-kD granule-associated protein (grp 60) from human LAK 
cells and from mouse cytolytic T cells. The NH2-terminal amino acid sequence of the 
polypeptide was found to be identical to calreticulin. Calreticulin is a calcium storage protein 
and carries a COOH-terminal KDEL sequence, known to act as a retention signal for proteins 
destined to the lumen of the endoplasmic reticulum. In CTLs, however, calreticulin colocalizes 
with the lytic perforin to the lysosome-like secretory granules, as confirmed by double label 
immunofluorescence confocal microscopy. Moreover, when the release of granule-assodated proteins 
was triggered by stimulation of the T cell receptor complex, calreticulin was released along with 
granzymes A and D. Since perforin is activated and becomes lyric in the presence of calcium, 
we propose that the role of calreticulin is to prevent organelle autolysis due to the protein's calcium 
chelator capacity. 

C Ytolytic T cells represent a major arm of the cell-mediated 
immune response. They recognize and lyse cells carrying 

nonself epitopes, such as virus-infected cells, tumor cells, or 
grafted tissues (for review see references 1 and 2). A current 
view of the mechanism of destruction of the target cell in- 
dudes the vectorial secretion of the content of cytoplasmic 
granules by the effector cell into the intercellular space at the 
site of contact (3-5). This process of degranulation releases, 
in addition to typical lysosomal enzymes, a pore-forming pro- 
rein (PFP) called perforin (cytolysin), a family of serine es- 
terases, known as granzymes, and proteoglycan molecules. 

Isolated cytoplasmic granules are cytolytic to various tumor 
cell lines and erythrocytes (3, 6), indicating the importance 
of the granule-assodated molecules in the cytolytic event. Only 
for perforin, however, has the lytic potential dearly been 
demonstrated. In the presence of calcium, perforin polymerizes 
on target cell membranes forming transmembrane, ring-like 
pores, structurally similar to those caused by the complement 
membrane attack complex or bacterial toxins (7, 8). Any target 
cell, except activated cytolytic T cells, succumbs to this at- 
tack (9, 10). 

The role of other granule-harbored molecules in cytolysis 
is less dear. Purified granzymes are not lytic, despite the fact 
that various protease inhibitors suppress CTb-mediated cy- 

tolysis (11-13). Granzymes A and B, however, seem to par- 
ticipate in the degradation of the target cell's nuclear DNA, 
which is observed during the CTL attack in parallel to the 
impairment of the cytoplasmic membrane (14-16). An iden- 
tical role has also been attributed to TIA-1, a recently de- 
scribed granule-associated poly(A)-binding protein (17). 

We have considered the possibility that additional granule 
proteins may regulate the process of cell lysis. Here we re- 
port the purification of a 60-kD, granule-associated protein 
that copurifies with perforin. 

Materials and  Methods  
Cells. The murine B6.1 CTL cell line (7) was grown in RPMI 

supplemented with 5% FCS; 10% supematant of Con A-activated 
rat spleen cells as a source of IL-2; 100 U/ml penicillin; 100/~g/ml 
streptomycin, 25 mM Hepes, and 2 mM t-glutamine. The routine 
CTL clones Cw3 1.1 and Pb CS F12 specific for the Plasmodium 
berghei circumsporozoite (CS) epitope (249-260) were kindly 
provided to us by Dr. P. Romero (18) and maintained in culture 
by weekly restimulation with peptide-pulsed P815 and spleen cells. 
Human LAK cells were prepared from PBMC of healthy donors 
(19). Mononudear cells were isolated by density gradient centrifu- 
gation using Ficoll-Hypaque. Monocytes and B cells were depleted 
by phstic adherence and passage through nylon wool columns (20). 
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HL601 ceils are human promyelocytic leukemia cells obtained 
through the American Type Culture Collection (Kockville, MD). 

Isolation of Granules. The method for isolation of CTL granules 
from mouse cell lines has been previously described in detail (21). 
The identical procedure was also used for the isolation of LAK- 
derived granules. In brief, cells were washed twice in PBS, 
resuspended in 12 ml PIPEG (100 mM KC1, 3.5 mM NaC1, 3.5 
mM MgC12, 1 mM ATP, 1.25 mM EGTA, and 10 mM Pipes, pH 
6.8) and broken by nitrogen cavitation. After removal of nuclei 
and aggregates, the organelles were separated on a discontinuous 
Percoll gradient (Pharraacia, Uppsala, Sweden). The gradient con- 
sisted of 15.9 ml of 85% (vol/vol) Percoll, and 12.1 ml of 39% 
Percoll in PIPEG. The tube was centrifuged at 19,000 rpm in a 
rotor (model JA20; Beckman Instruments, Inc., Palo Alto, CA) 
for 30 rain at 40C. 1-ml fractions were collected and tested for 
hemolytic activity. For the isolation of soluble granule proteins, 
granules were made 1.5 M in NaC1 and 10 mM in benzamidine, 
thereby disrupting the granule membranes. They were ultracen- 
trifuged to eliminate Percoll and membranes (170,000 g for 2 h 
at 4~ and the superuatant recovered. 

Separation of Granule Proteins. The solubillzed granule prepara- 
tions (109 human LAK cell or mouse CTL equivalent) were dia- 
lyzed against 10 mM Tris-HCl (pH 8.0) and 50 mM NaCI. The 
mixture was applied to a Mono Q anion exchange column (fast 
protein liquid chromatography [FPLC] Phannacia). After the 
column had been washed with 10 ml 10 mM Tris-HC1 (pH 8.0), 
50 mM NaC1, the proteins were eluted with a 20-ml linear salt 
gradient of 50 raM-500 mM NaC1 in 10 mM Tris-HC1 (pH 8.0). 
1-ml fractions were collected. Aliquots (50/~1) of each fraction were 
analyzed by SDS-PAGE. 

Amino Acid Sequencing. The Mono Q fractions containing the 
protein of interest were pooled, concentrated 20-fold on membranes 
(Centricon PM 30, Amicon, Beverly, MA) and resolved by SDS- 
PAGE in the presence of 100 mM thioglycolate and 0.05 mM 
glutathione (Sigma Chemical Co., Buchs, Switzerland). Proteins 
were transferred to polyvinylidene difluoride [FVDF] (Immobilon; 
Millipore, Ziirich, Switzerland) microporous membrane and stained 
with Ponceau red (Serva Biochemicals, Heidelberg, Germany). The 
60-kD protein was excised and subjected to automated Edman degra- 
dation in a gas phase sequencer (model 470A; Applied Biosystems, 
Inc., Foster City, CA) using standard protocols. 

SDS-PAGE, Immunoblots, and Antibodies. Samples were dectro- 
phoresed on 10% slab gels according to Laemmli (22). Gels were 
developed with the silverstain procedure. For immunoblots, pro- 
teins from the gels were transferred electrophoretically to nitrocd- 
lulose, and immunoblot analysis was performed according to the 
procedure of Towbin et al. (23). For the detection of calreticulin, 
a polyclonal rabbit antiserum was raised against the NHrterminal 
20 amino acids of the human sequence of calreticulin coupled to 
KLH. It was used at a dilution of 1:200. Perforin was detected 
with the mAb CB. 5.4 raised against the recombinant mouse pro- 
tein, whereas a rabbit polyclonal antiserum (21) was used to reveal 
granzyme D. The blots were developed with alkaline-phosphatase- 
coupled secondary antibodies and the 5-bromo-4-chloro-3-indoyl 
phosphate/nitro blue tetrazolium (Sigma Chemical Co.) detection 
system. Calreticulin from HL60 ceils was purified according to 
Krause et al. (24). 

Degronulation of CTL. 100-ram petri dishes (model 1029; 
Falcon, Ziirich, Switzerland) were coated with rat anti-mouse CD3 

1 Abbreviations used in this paper: ER., endophsmic reticulum; FPLC, fast 
protein liquid chromatography; gTp, granule-assodated protein; HL60, 
human promyelocytic leukemia 60 cells. 

mAb 17 A2 (25) by incubating 10 ml of antibody solution (20 
/xg/rrd) per plate in 50 mM Tris-HC1, pH 9.5, for 2 h at 370C. 
After incubation, each plate was washed twice with PBS and 107 
cells were added per dish. Subsequently, CTL Pb CS F12 were in- 
cubated for 4 h at 370C in dishes coated with solid-phase anti- 
CD3 mAb, or for control purposes, devoid of activating antibodies. 

Protein Analysis of the Cell Supernatant. After 4 h stimulation 
in serum-free medium as described above, 107 cells were cen- 
trifuged at 300 g and cell superuatant was harvested, passed through 
0.22-/xm filters, dialyzed for 2 h against 20 mM Tris (pH 8) 50 
mM NaCI, and finally loaded onto the Mono Q column. Fractions 
of I ml were eluted with a gradient of 50--500 mM NaC1 and ana- 
lyzed by immunoblotting. The amount of secreted granzyme A 
activity (BLT-esterase) from 10 s CTL was measured in 0.1 ml 
DMEM with 25 mM Hepes in a 96-wall microtiter plate using 
the method described by Pasteruack et al. (26). The activity of lac- 
tate dehydrogenase, as marker enzyme of the cytosolic compart- 
ment, was tested in superuatants of CTL harvested after 4 h incu- 
bation of cells in wells as described (27). 

Immunofluorescence Microscopy. Cells from mouse CTL clone 
Cw3 1.1 were plated onto glass slides (pretreated with polylysine 
at 50/~g/ml for 30 rain) 4 d after stimulation. Cells were fixed 
with 3% paraformaldehyde in PBS for 30 rain at room tempera- 
ture. Unreacted aldehyde groups were quenched by incubation in 
50 mM NH2CI for 10 min. Cells were then permeabilized by in- 
cubation in PBS, 0.2% BSA, and 0.05% saponin (Sigma Chemical 
Co.) for 2 x 10 rain. Perforin was detected by staining with a 
monodonal rat anti-mouse perforin antibody CE2.2 conjugated 
to Texas red (Fluka Chemical Co., Buchs, Switzerland) for 30 min. 
Calreticulin was detected by incubation with a rabbit anti-human 
antiserum directed against the 20 NH2-terminal residues of cal- 
reticulin. After extensive washing, bound antibody was visualized 
using a FITC-conjugated secondary antibody (Amersham Corp., 
Zfirich, Switzerland) at a dilution of 1:1,000. For double labeling, 
cells were sequentially incubated with the different antibodies. Con- 
focal microscopy was carried out using a light microscope (model 
35M; Zeiss, Oberkochen, Germany) equipped with a confocal laser 
system (model MRC-600; Bio-Rad Laboratories, Ziirich, Switzer- 
land). Spedmens were observed under epifluorescence illumination 
with a 488- or 514-nm scanning argon laser beam. 

Results 

Purification of  a Granule.associated 60-kD Protein (grp 60) with 
NH2-terminal Identity to Human Calreticulin ,(Ro/$S-A an- 
tigen). Previous studies in our laboratory have shown that 
the adsorption of solubilized granule-associated proteins to 
a Mono S cation exchange column allowed to the separation 
and isolation of the highly basic granzymes (91). In contrast, 
perfofin binds to the anion exchanger Mono Q. While using 
this column, we repeatedly observed that an additional pro- 
tein was coeluting with per~orin and its lytic activity. 

Typically, granules isolated from 2 x 109 human LAK 
cells were solubilized in 1.5 M NaC1 and, after dialysis, sub- 
jeered to FPLC Mono Q chromatography. The bound pro- 
teins were desorbed with a salt gradient, revealing several Fro- 
tein species eluting at low ionic strength. We focused our 
attention on two predominant proteins consistently coming 
off at 400 mM NaC1 with apparent molecular masses of 60 
and 70 kD, respectively (Fig. 1). The 70-kD protein was 
identified as perforin by immunoblotting (see below). Sev- 
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Figure 2. Amino acid sequence comparison of the 10 NH2-terminal 
residues of grp 60 from human (29) LAK cells with the NH2-terminal 
sequence of the Ro/SS-A antigen and murine (28) and rabbit calreticulin. 
(*) Identity to the grp 60 amino acid. (O) The amino acid that could 
not be determined unambiguously. Ro/SS-A antigen corresponds to human 
calreticulin. 

Figure 1. SDS-PAGE analysis of the purification steps of grp 60. (,4) 
Granules (5 x 10 s LAK cell equicalents) were sohbilized in 1.5 M NaCI, 
dialyzed, and applied to Mono Q anion chromatography. Fractions were 
eluted with a gradient from 50 to 500 mM NaC1 and analyzed by SDS- 
PAGE. (B) Fractions exhibiting hemolytic activity and during at 400-450 
mM salt derived from human LAK cells and mouse B6.1 CTL cell line 
were pooled and analyzed. (C) Analysis of purified grp 60 (calreticulin) 
after Superose-12 gel filtration. On this column, perforin is nonspecifically 
retarded and thus allows the purification of calreticulin. All gels were run 
under reducing conditions and silver stained. Molecular weight standards 
are given on the left. 

eral preparations also contained small amounts of a protein 
that migrated with a Mr of 62 kD when analyzed by SDS- 
PAGE under reducing conditions. 

To test whether the 60-kD protein was also present in 
granules of lymphocytes of a different species, granule pro- 
teins prepared from the mouse B6.1 CTL cell line were loaded 
onto the Mono Q column according to the same protocol. 
Again, two bands of 60 and 70 kD were eluted at a 400 mM 
NaC1 (Fig. 1 B). 

The human 60-kD protein (grp 60) was further purified 
by gel filtration chromatography (Fig. 1 C), transferred onto 
Immobilon and subjected to NH2-terminal sequence anal- 
ysis. The sequence of the ten first amino acids of grp 60 dis- 
played perfect identity with human calreticulin, originally 
defined as Ro/SS-A autoantigen (Fig. 2). Calreticulin is the 
major Ca 2+-binding (storage) protein of smooth muscle sar- 
coplasmic reticulum and nonmuscle endoplasmic reticulum 
(ER) (28). The entire protein sequence of human calretic- 
ulin derived from cDNA cloning and sequencing reveals a 
polypeptide of 417 amino acids that migrates aberrantly at 
60 instead of 48 kD by SDS-PAGE (29, 30). The protein binds 
30-50 Ca 2+ with low a~nity and one Ca 2+ with high 
affinity (31). The C-domain terminates with a KDEL ER 
retention signal. 

To corroborate the identity of the 60-kD granule protein 
(grp 60) with calreticulin, antibodies raised against a peptide 
encompassing the 20 NH2-terminal residues of human cal- 
reticulin were used in immunoblots. Whole lytic granule com- 

ponents as well as purified grp 60 derived from both human 
LAK cells and mouse B6.1 CTL cell line were separated by 
SDS-PAGE and transferred onto nitrocellulose. Granule pro- 
teins obtained from human LAK cells showed a single band 
reacting with the antibody. The identified protein comigrated 
with calreticulin purified from calciosomes of HL60 cells (24) 
which was used as a positive control (Fig. 3). One of the 
granule components and purified grp 60 from murine origin 
also reacted with the antiserum, which can be explained by 
the high degree of conservation between the known human 
and mouse sequences (28). In addition, the 62-kD minor spe- 
cies was recognized by the antibody, suggesting the existence 
of two distinct forms of calreticulin in our granule prepara- 
tions. Using a rat mAb directed against murine perforin, we 
could confirm the identity of the 70-kD protein with per- 
forin, which explains that hemolytic activity was found in 
fractions containing calreticulin. 

Subcellular Localization of Calreticulin in T Lymphocytes. 
Calreticulin is predominantly detected in the ER of fibro- 
blasts and of liver cells (32, 33). This subcellular localization 
is explained by the COOH-terminal KDEL sequence that 
was postulated to be both necessary and suffident for pro- 
teins to be retained in the lumen of the ER. The KDEL se- 
quence does not prevent the export of the proteins from the 
ER, but allows escaped proteins to be retrieved from later 
compartments of the secretory pathway by means of a KDEL 
receptor and the subsequent accumulation of the receptor- 
ligand complex in the ER (34). 

Our results show the presence of calreticulin in lysosome- 
like secretory granules in lymphocytes. In these cells, the 

Figure 3. Immunoblot analysis of lymphocyte-derived calreticulin. (.4) 
Purified calreticulin from HL60 cells was analyzed by immunoblotting 
using an antiserum raised against a peptide encompassing the 20 NHz- 
terminal residues of human calreticulin. (B) The same antiserum reacted 
with a single band on granule protein preparations (lane 1) or with purified 
grp 60 (lane 2) from human LAK cells. Corresponding material from mouse 
B6.1 CTL cell line cross-reacted with the antibody. (C) The 70-kD band 
coeluting with grp 60 from the Mono Q column was identified as per- 
forin using mAb CB.5.4. Proteins were analyzed by 10% SDS-PAGE and 
electrophoretically transferred onto nitrocellulose. The blots were devel- 
oped as described in Materials and Methods. 
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Figure 5. Calreticulin is released upon 
TCR comple~ stimulation. The mouse 
CTL clone Cw3 1.1 was incubated with 
solid phase 17.A2 anti-CD3 mAbs pre- 
viously adsorbed onto petri dishes. After 
4 h stimulation, the cell supernatant was 
dialyzed and concentrated by Mono Q 
chromatography. The fraction ehting at 
400 mM salt from stimulated cells (lane 
I) or from cells without stimuli (lane 2) 
were analyzed by immunoblotting. Lane 
3 corresponds to purified calreticulin. The 
dficacy of degranulation after the stimu- 
lation was assayed by testing granzyme 
D release using a polyclonal rabbit 
anti-granzyme D antiserum (lane 4). 

Figure 4. Coiocalization of calreticulin with perforin in the cytolytic 
granules. The murine CTL clone Cw3 1.1 was analyzed using confocal 
microscopy. CTLs were double-labded with anticalreticulin and mAb 
against perforin. Indirect labeling of calreticulin with FITC (A) is similar 
to the staining of the same cell with antiperforin mAb directly coupled 
to Texas red (B). (C) Phase contrast imaging of the analyzed cells. Bars, 
10 p,m. 

routing of KDEL proteins and calreticulin in particular has 
not been investigated. Because of the inherent pitfall of lo- 
calization studies by ultracentrifugation techniques, it was 
important to corroborate calreticulin's intracellular distribu- 
tion by different, independent methods. Using immunofluores- 
cence confocal microscopy, cytolytic granules are easily dis- 
tinguishable because of their distinct morphology (Fig. 4). 
When a rat mAb directed against mouse perforin was used, 
these organdies were clearly stained. Calreticulin was present 
in the same organdie as detected by confocal double label 
immunofluorescence. 

Release of Calreticulin in the Supernatant upon TCR Complex 
Occupation. The specific secretion of intragranular proteins 
in CTL is induced by the occupation of the CTL antigen 
receptor by the target cell surface antigens or by immobi- 
lized anti-TCK complex mAbs (35). Subsequent to these 
stimuli, granzyme A and B activity can be measured in the 
supernatant, and granzyme C, D, E, and F antigen can be 
detected. Degranulation is specific for proteins residing in 
the cytoplasmic lytic granules and no markers of other or- 
ganelles are released, thus providing indirect biochemical evi- 
dence for the intracellular localization of these molecules. Evi- 
dence for the TCR-regulated secretion of calreticulin is 
provided by the results of the experiment shown in Fig. 5. 
By immunoblot analysis, calreticulin was detected in incuba- 

tion medium of CTL which had been stimulated during 4 h 
with immobilized anti-CD3 mAb (Fig. 5, lane 1), whereas 
no calreticulin was detected in incubation medium of CTL 
that were incubated without stimuli (Fig. 5, lane 2). It is 
interesting that the minor 62-kD form of calreticulin found 
in isolated granules (see Fig. 1) was never revealed in the relea- 
sate. Based on the granzyme A activity recovered in the cell 
superuatant, 40% of granule proteins were secreted under 
these conditions, whereas the activity of the cytoplasmic en- 
zyme lactate dehydrogenase, which served as a control to ex- 
clude self-lysis of the cells during stimulation, did not in- 
crease above background levels (data not shown). 

Taken together, the results described in Figs. 1-5 provide 
evidence for grp 60 being calreticulin, and for its localization 
to granules of CTL and LAK cells. 

Discussion 

The major constituents of cytolytic granules so far charac- 
terized are proteoglycan molecules of the chondroitin sulfate 
A type, granzymes, and perforin. Here we describe the isola- 
tion of an additional polypeptide with an apparent molec- 
ular mass of 60 kD. It is present in granules of murine CTLs 
and human LAK cells at an apparent concentration equal to 
that of perforin. 

We were able to devise a purification strategy that allowed 
us to obtain sufficient protein to analyze the first 10 NH2- 
terminal amino acids. The sequence data obtained for the 
human protein showed its complete identity to the Ro/SS-A 
antigen, a protein which encodes the human homologue of 
calreticulin. An antiserum raised against the NH2-terminal 
peptide of human calreticulin reacted with purified human 
and mouse grp 60. Both lymphocyte-derived grp 60 and cal- 
reticulin isolated from HL60 cells revealed the same molec- 
ular weight, further corroborating the identity of the two 
molecules. 

Calreticulin is a ubiquitous calcium binding protein. The 
protein has a highly zonal structure with an approximal neu- 
tral (net charge) NH2-terminus, forming a globular domain 
followed by a proline-rich repetitive region and an acidic, 
Ca 2 +-binding COOH-terminal domain (28). Calreticulin is 
a prototype of a protein carrying a COOH-terminal KDEL 
sequence which is known to act as a retention signal for pro- 
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reins destined for the lumen of the Elk. In lymphocytes, the 
majority of calreticulin is associated with the lytic granules 
as shown by immunofluorescence studies. This localization 
was substantiated by the observation that the occupation of 
the TCR complex leads to the secretion of not only well- 
identified granule-specific proteins such as granzyme A, but 
also of calreticulin. 

We can only speculate on the reasons leading to the sur- 
prising sorting behavior of calreticulin in lymphocytes. Per- 
haps the form of calreticulin sorted into granules of CTL 
may have lost the KDEL sequence by the action of a pepti- 
dase. In isolated granules, two immunoreactive proteins, a 
major product of 60 kD and a minor species of 62 kD, are 
detected. However, only the 60-kD species is released upon 
TCR stimulation, raising the possibility that the larger mol- 
ecules represent Elk-associated calreticnlin, and that these two 
forms contain different sorting signals. The presence of a minor 
62-kD band has already been observed by Peter et al. (33) 
in ER-derived preparations from liver cells. Calreticulin may 
associate with a protein destined for the regulated secretory 
pathway during biosynthesis. Assuming that calreticulin forms 
a complex with perforin or granzymes during the biosyn- 
thetic pathway, the built-in sorting signal of perforin or gran- 
zymes - it has been described that granzymes are sorted 
via the mannose-6-phosphate receptor (36) - may overrun 
or mask the KDEL signal, and sorting of calreticulin to the 
granules would ensue. Alternatively, the KDEL receptor may 
be present in this lyric, storage organdie. The KDEL signal 
does not prevent the diffusion of the proteins in the ER or 
the export from it, but allows escaped proteins to be retrieved 
from later compartments of the secretory pathway (34). That 
such a retrieval occurs was demonstrated by the finding that 
proteins with retention signals undergo carbohydrate mod- 
ifications that only occur in the Golgi compartments (33, 
37). Indeed, most of the receptor is found in a salvage com- 
patment between ER and Golgi (34). Saturation of the KDEL 
receptor is another possible explanation. The receptor is a 
minor transmembrane protein (38). During the activation 
of lymphocytes and granule biogenesis, high quantities of 
proteins destined for the granules and secretion in general 
are synthesized (39). Among these, calreticulin's or other 
KDEL proteins' synthesis may be induced, thereby saturating 
the capacity of the retrieval system. The excess of molecules 
may thus be secreted or routed to organelles with high storage 
capacity. This hypothesis can be tested, since other KDEL 
proteins should be found in the granules in addition to cal- 
reticulin. 

The marked domain structure enables calreticulin to exert 
different functions. Apart from its role as calcium binding 
molecule, it is known to stabilize the ravin-containing 
monooxygenase in rabbit lungs by forming a 1:1 complex, 
thereby decreasing its susceptibility to inactivation by deter- 
gents (40). In addition, the synthesis of calreticulin is stress 
induced (41), and therefore it has been proposed that calretic- 
ulin is used as a chaperone-like molecule to facilitate processing 
or folding of proteins, similarly to heat shock proteins. 

Both the calcium-binding and chaperone-like properties 
of calreticulin could explain and justify its presence in storage 

granules of lymphocytes, where it colocalizes with the lytic 
perforin. Perforin is stored in a nonstable conformation, and 
the presence of only 100 #M free calcium ions (1, 42) is known 
to induce a hydrophilic-amphiphilic transition which leads 
to its insertion into membranes. Moreover, preincubating 
granules with identical caldum concentrations, before a lysis 
test, leads to a rapid assembly and inactivation of perforin. 
It is therefore important for lymphocytes to keep free cal- 
cium concentration as low as possible along perforin's bio- 
synthetic pathway to avoid both autolysis of the ER and Golgi 
and to prevent perforin's inactivation. In the ER of fibro- 
blasts, for instance, the free calcium concentration amounts 
to only 0.5/~M (43). Most of the remaining ions are suppos- 
edly bound to calreticulin and not freely available. Little, how- 
ever, is known about the Ca 2 + concentration found in other 
organelles along the secretory pathway, in particular in lytic 
granules of lymphocytes, but again calreticulin may fulfil an 
important role as Ca 2+ buffer to maintain the lytic activity 
of perforin. 

Akin to the lung monooxygenase, perforin in its mono- 
merle conformation is unstable and highly sensitive to inac- 
tivation by detergents (44). Calreticulin may complex to per- 
forin during biosynthesis and storage, thereby keeping the 
pore-forming protein in its metastable, globular conforma- 
tion in a chaperone-like manner. The codution of calretic- 
ulin with perforin from the Mono Q column suggests that 
this may be the case, since the pI of perforin (6.85) and cal- 
reticulin (4.1) are quite different. 

Previous results demonstrated that calreticulin is identical 
to the Ro/SS-A antigen. The presence of anti-Ro/SS-A/cal- 
reticulin autoantibodies in patient sera is a distinct feature 
of autoimmune diseases such as systemic lupus erythematosus 
(40% of cases) and Sj6gren's syndrome (70% of cases) (45). 
These findings were recently challenged by Rokeach et al. 
(30), who demonstrated that calreticulin is not identical with 
one of the Ro/SS-A autoantigens, but rather defines a different 
autoantigen. Autoantibodies to calreticulin, however, have 
also been dearly demonstrated in patients suffering from on- 
chocerciasis, or river blindness (30). Onchocerca volvulus, the 
causative agent of this disease, is a filarial nematode which 
causes blindness, sclerosing lymphadenitis, and dermatologic 
diseases in humans (46). The mechanisms leading to the 
production of the autoantibodies remain unclear, as does their 
role in the pathogenesis of the disease. There has been 
mounting evidence that foreign microbial or parasite-derived 
antigens may trigger an inappropriate immune response against 
self-antigens through molecular mimicry (47). It is interesting 
that calreticulin's sequence shares a 64% overall identity with 
the RAL-1 antigen, the major antigen of Onchocerca volvulus 
(48). Antibodies generated against the calreticulin-like RAbl 
protein (29) cross-react with calreticulin (30). We propose 
that the antibody response against the common epitopes will 
be stimulated and thus maintained upon the release of cal- 
reticulin from stimulated lymphocytes. Immune complexes 
will be formed, leading to an increased inflammatory response. 
The immunologic consequence of the permanent release of 
calreticulin from lymphocytes during infection is currently 
under investigation. 
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